Abstract

At present, more and more attention has been paid to the development of active wound dressings. Chitosan, a kind of carbohydrate polymer with good biocompatibility, is widely used in the field of wound dressings. In this study, a slopeing free surface electrospinning (SFSE) device was presented to prepare large quantities of polycaprolactone/chitosan/aloe vera (PCL/CS/AV) nanofiber membranes (NFMs) for antibacterial wound dressing. And the morphologies of PCL/CS/AV NFMs with varying weight ratios of PCL:CS:AV were studied using SEM, and the optimal weight ratio of 5:3:2 was determined for better wound dressings. Then the structure, wetting property and yield of the PCL/CS/AV NFMs with the optimal weight ratio were investigated, and the effects of the addition of AV on the antibacterial performance and the biocompatibility of NFMs was studied. In addition, the preparation mechanism of SFSE was researched by simulating the electric field distribution using Maxwell 3D due to the important role of the electric field in the SFSE process. The simulation analyses of electric fields agreed with the experimental data. The results illustrated SFSE could prepare high quality PCL/CS/AV NFMs in batches, and its yield of PCL/CS/AV NFMs was 10 times more than the single-needle ES, and the fabricated NFMs showed excellent antibacterial performance and biocompatibility, which made them suitable for wound dressings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call