Abstract
Semi-blind source separation (SBSS) is a special case of the well-known blind source separation (BSS) when some partial knowledge of the source signals is available to the system. In particular, a batch adaptation in the frequency domain based on independent component analysis (ICA) can be effectively used to jointly perform source separation and multichannel acoustic echo cancellation (MCAEC) through SBSS without double-talk detection. Many issues related to the implementation of an SBSS system are discussed in this paper. After a deep analysis of the structure of the SBSS adaptation, we propose a constrained batch-online implementation that stabilizes the convergence behavior even in the worst case scenario of a single far-end talker along with the non-uniqueness condition on the far-end mixing system. Specifically, a matrix constraint is proposed to reduce the effect of the non-uniqueness problem caused by highly correlated far-end reference signals during MCAEC. Experimental results show that high echo cancellation can be achieved just as the misalignment remains relatively low without any preprocessing procedure to decorrelate the far-end signals even for the single far-end talker case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.