Abstract

Cupric ion fixation by raw peat is likely involved in both cation exchange with H +, Ca 2+, Mg 2+ and adsorption-complexation, i.e. fixation of the same equivalent of copper ions and anions (NO 3 −) without any ion release. The importance of both reactions depends largely on initial copper concentration, peat type and pH. Isotherms of copper (initial concentration ranging between 1 and 20 mM) fixation on two types of peat (eutrophic and oligotrophic peat at 30 g d.w./l at pH ranging between 2 and 4) showed that the higher the initial cupric concentration, the more important is this complexation reaction; over this initial cupric concentration range, ion exchange sites were relatively saturated and reached 308 and 101 mmol/kg d.w. for eutrophic and oligotrophic peat whereas no saturation was found for complexation sites, their capacity attaining up to 74 and 119 mmol/kg d.w., respectively. The apparent equilibrium constant for ion exchange with acid-treated peat (initial pH 4.0, 30 g d.w./l) for various metal binding on both peat sites ranged between 1.1 and 10.8 in 15 mM metallic solutions. The apparent affinity in batch conditions for 5 elements may be compared according to the apparent global equilibrium constants, ranging between 1.1 × 10 −6 and 20.2 × 10 −6: Pb > Cu > Ca > Mg, Zn for eutrophic peat and Pb > Ca > Cu > Mg, Zn for oligotrophic peat.

Highlights

  • HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not

  • The documents may come from teaching and research institutions in France or abroad, or from public or private research centers

  • Distributed under a Creative Commons Attribution| 4.0 International License

Read more

Summary

Introduction

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.