Abstract

In this paper, we consider an M $${}^X$$ /M/1/SET-VARI queue which has batch arrivals, variable service speed and setup time. Our model is motivated by power-aware servers in data centers where dynamic scaling techniques are used. The service speed of the server is proportional to the number of jobs in the system. The contribution of our paper is threefold. First, we obtain the necessary and sufficient condition for the stability of the system. Second, we derive an expression for the probability generating function of the number of jobs in the system. Third, our main contribution is the derivation of the Laplace–Stieltjes transform (LST) of the sojourn time distribution, which is obtained in series form involving infinite-dimensional matrices. In this model, since the service speed varies upon arrivals and departures of jobs, the sojourn time of a tagged job is affected by the batches that arrive after it. This makes the derivation of the LST of the sojourn time complex and challenging. In addition, we present some numerical examples to show the trade-off between the mean sojourn time (response time) and the energy consumption. Using the numerical inverse Laplace–Stieltjes transform, we also obtain the sojourn time distribution, which can be used for setting the service-level agreement in data centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.