Abstract
We describe and evaluate two algorithms for Neyman-Pearson (NP) classification problem which has been recently shown to be of a particular importance for bipartite ranking problems. NP classification is a nonconvex problem involving a constraint on false negatives rate. We investigated batch algorithm based on DC programming and stochastic gradient method well suited for large-scale datasets. Empirical evidences illustrate the potential of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Intelligent Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.