Abstract
14-Hydroxymorphinone is converted to noroxymorphone, the immediate precursor of important opioid antagonists, such as naltrexone and naloxone, in a three-step reaction sequence. The initial oxidation of the N-methyl group in 14-hydroxymorphinone with in situ generated colloidal palladium(0) as the catalyst and molecular oxygen as the terminal oxidant constitutes the key transformation in this new route. This oxidation results in the formation of an unexpected oxazolidine ring structure. Subsequent hydrolysis of the oxazolidine under reduced pressure followed by hydrogenation in a packed-bed flow reactor using palladium(0) as the catalyst provides noroxymorphone in high purity and good overall yield. To overcome challenges associated with gas-liquid reactions with molecular oxygen, the key oxidation reaction was translated to a continuous-flow process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.