Abstract

The biosorption of Cu(II), Cd(II), and Pb(II) by a dried green macroalga Caulerpa lentillifera was investigated. The sorption kinetic data could be fitted to the pseudo second order kinetic model. The governing transport mechanisms in the sorption process were both external mass transfer and intra-particle diffusion. Isotherm data followed the Sips isotherm model with the exponent of approximately unity suggesting that these biosorption could be described reasonably well with the Langmuir isotherm. The maximum sorption capacities of the various metal components on C. lentillifera biomass could be prioritized in order from high to low as: Pb(II) > Cu(II) > Cd(II). The sorption energies obtained from the Dubinin–Radushkevich model for all sorption systems were in the range of 4–6 kJ mol −1 indicating that a physical electrostatic force was potentially involved in the sorption process. Thomas model could well describe the breakthrough data from column experiments. Ca(II), Mg(II), and Mn(II) were the major ions released from the algal biomass during the sorption which revealed that ion exchange was one of the main sorption mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.