Abstract

Through batch adsorption and column leaching experiments, this study aimed to investigate the adsorption and transport behavior of aniline in loess and related mechanism under different hydrochemical conditions. Batch experiments results indicated that aniline adsorption reached equilibrium after about 120min, and the adsorption fitted the pseudo-second-order kinetic and Freundlich models well. The adsorption was spontaneous and exothermic process, indicating the aniline adsorbed by inherent colloidal particles (ICPs) tended to transport. Low pH value, ionic strength and temperature benefitted the adsorption. Column experiments results under different ionic strengths (100, 10 and 1mM) confirmed the potential transport of aniline. The FT-IR spectra have further suggested that aniline was adsorbed by the ICPs through hydrogen-bond, hydrophobic effect and cation exchange interactions. Low ionic strength was advantageous for the adsorption of aniline in loess and the stabilities of ICPs in solution, but enhanced the co-transport probability of ICPs with aniline in loess.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.