Abstract

BackgroundEvidence of haemosporidian infections in bats and bat flies has motivated a growing interest in characterizing their transmission cycles. In Gabon (Central Africa), many caves house massive colonies of bats that are known hosts of Polychromophilus Dionisi parasites, presumably transmitted by blood-sucking bat flies. However, the role of bat flies in bat malaria transmission remains under-documented.MethodsAn entomological survey was carried out in four caves in Gabon to investigate bat fly diversity, infestation rates and host preferences and to determine their role in Polychromophilus parasite transmission. Bat flies were sampled for 2–4 consecutive nights each month from February to April 2011 (Faucon and Zadie caves) and from May 2012 to April 2013 (Kessipoughou and Djibilong caves). Bat flies isolated from the fur of each captured bat were morphologically identified and screened for infection by haemosporidian parasites using primers targeting the mitochondrial cytochrome b gene.ResultsAmong the 1,154 bats captured and identified as Miniopterus inflatus Thomas (n = 354), Hipposideros caffer Sundevall complex (n = 285), Hipposideros gigas Wagner (n = 317), Rousettus aegyptiacus Geoffroy (n = 157, and Coleura afra Peters (n = 41), 439 (38.0 %) were infested by bat flies. The 1,063 bat flies recovered from bats belonged to five taxa: Nycteribia schmidlii scotti Falcoz, Eucampsipoda africana Theodor, Penicillidia fulvida Bigot, Brachytarsina allaudi Falcoz and Raymondia huberi Frauenfeld group. The mean infestation rate varied significantly according to the bat species (ANOVA, F(4,75) = 13.15, P < 0.001) and a strong association effect between bat fly species and host bat species was observed. Polychromophilus melanipherus Dionisi was mainly detected in N. s. scotti and P. fulvida and less frequently in E. africana, R. huberi group and B. allaudi bat flies. These results suggest that N. s. scotti and P. fulvida could potentially be involved in P. melanipherus transmission among cave-dwelling bats. Sequence analysis revealed eight haplotypes of P. melanipherus.ConclusionsThis work represents the first documented record of the cave-dwelling bat fly fauna in Gabon and significantly contributes to our understanding of bat fly host-feeding behavior and their respective roles in Polychromophilus transmission.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1625-z) contains supplementary material, which is available to authorized users.

Highlights

  • Evidence of haemosporidian infections in bats and bat flies has motivated a growing interest in characterizing their transmission cycles

  • Important qualitative and quantitative variations were observed between caves and only bats belonging to the H. caffer complex were captured in all four caves

  • Of seasonality, most H. caffer complex and M. inflatus specimens were captured in Kessipoughou and Djibilong caves, whereas H. gigas and R. aegyptiacus were more numerous in Kessipoughou and Zadie caves, respectively

Read more

Summary

Introduction

Evidence of haemosporidian infections in bats and bat flies has motivated a growing interest in characterizing their transmission cycles. In Gabon (Central Africa), many caves house massive colonies of bats that are known hosts of Polychromophilus Dionisi parasites, presumably transmitted by blood-sucking bat flies. Earlier descriptions of haemosporidian parasites infecting cave-dwellings bats [13, 14, 16, 17] have raised a growing interest on their transmission cycles and their potential arthropod vectors. The vector role of several blood-sucking arthropod groups living in caves has been investigated, with particular emphasis on mosquitoes [5, 18,19,20], biting midges [21] and sand flies [22,23,24,25]. Only few studies have been devoted to bat flies (Diptera: Brachycera), despite their role in transmission of infectious agents [26] favored by their ectoparasitic lifestyle, and their circumstantial incrimination in bat haemosporidian parasite infections [15, 27]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call