Abstract

Biosphere reserves, designated under The United Nations Education, Scientific and Cultural Organization’s (UNESCO) Man and Biosphere Programme, aim to sustainably integrate protected areas into the biological and economic landscape around them by buffering strictly protected habitats with zones of limited use. However, the effectiveness of biosphere reserves and the contribution of the different zones of use to protection is poorly known. We assessed the diversity and activity of bats in the Crocker Range Biosphere Reserve (CRBR) in Sabah, Malaysia, using harp traps, mist nets and acoustic surveys in each zone—core, buffer, transition and in agricultural plots outside of the reserve. We captured 30 species, bringing the known bat fauna of CRBR to 50 species, half of Borneo’s bat species. Species composition and acoustic activity varied among zones and by foraging ensemble, with the core and buffer showing particular importance for conserving forest-dependent insectivorous bats. Frugivorous bats were found in all zones but were the most abundant and most species-rich ensemble within agricultural sites. Although sampling was limited, bat diversity and activity was low in the transition zone compared to other zones, indicating potential for management practices that increase food availability and enhance biodiversity value. We conclude that, collectively, the zones of the CRBR effectively protect diversity, but the value of the transition zone can be improved.

Highlights

  • Tropical forests represent ~10% of total land cover yet support approximately two-thirds of global terrestrial diversity [1,2]

  • Bat surveys were conducted in the Crocker Range Biosphere Reserve (CRBR), known as Crocker Range Park, from 19–22 July 2017, 24

  • Whilst we aimed to include a diversity of these practices in our study, we did not investigate how specific practices, or how landscape-scale characteristics more broadly differed in their importance for protecting bat species within the reserve

Read more

Summary

Introduction

Tropical forests represent ~10% of total land cover yet support approximately two-thirds of global terrestrial diversity [1,2]. This diversity is under threat from the conversion of forests to agriculture and pasture, which remains the dominant driver of land-use change in the tropics today [3]. This has instigated an increase in the extent and quantity of protected areas in the tropics to conserve remaining biodiversity [4,5].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call