Abstract
Inspired by Bat Algorithm, a novel algorithm, which is called Evolved Bat Algorithm (EBA), for solving the numerical optimization problem is proposed based on the framework of the original bat algorithm. By reanalyzing the behavior of bats and considering the general characteristics of whole species of bat, we redefine the corresponding operation to the bats’ behaviors. EBA is a new method in the branch of swarm intelligence for solving numerical optimization problems. In order to analyze the improvement on the accuracy of finding the near best solution and the reduction in the computational cost, three well-known and commonly used test functions in the field of swarm intelligence for testing the accuracy and the performance of the algorithm, are used in the experiments. The experimental results indicate that our proposed method improves at least 99.42% on the accuracy of finding the near best solution and reduces 6.07% in average, simultaneously, on the computational time than the original bat algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Mechanics and Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.