Abstract

We report the isolation of a novel antimicrobial peptide, bass hepcidin, from the gill of hybrid striped bass, white bass (Morone chrysops) x striped bass (M. saxatilis). After the intraperitoneal injection of Micrococcus luteus and Escherichia coli, the peptide was purified from HPLC fractions with antimicrobial activity against Escherichia coli. Sequencing by Edman degradation revealed a 21-residue peptide (GCRFCCNCCPNMSGCGVCCRF) with eight putative cysteines. Molecular mass measurements of the native peptide and the reduced and alkylated peptide confirmed the sequence with four intramolecular disulfide bridges. Peptide sequence homology to human hepcidin and other predicted hepcidins, indicated that the peptide is a new member of the hepcidin family. Nucleotide sequences for cDNA and genomic DNA were determined for white bass. A predicted prepropeptide (85 amino acids) consists of three domains: a signal peptide (24 amino acids), prodomain (40 amino acids) and a mature peptide (21 amino acids). The gene has two introns and three exons. A TATA box and several consensus-binding motifs for transcription factors including C/EBP, nuclear factor-kappaB, and hepatocyte nuclear factor were found in the region upstream of the transcriptional start site. In white bass liver, hepcidin gene expression was induced 4500-fold following challenge with the fish pathogen, Streptococcus iniae, while expression levels remained low in all other tissues tested. A novel antimicrobial peptide from the gill, bass hepcidin, is predominantly expressed in the liver and highly inducible by bacterial exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call