Abstract

The pathogenic role of IgE has been implicated in a variety of allergic and inflammatory diseases. We have previously established an IgE-mediated cutaneous reverse passive Arthus model in which eosinophil infiltration is a prominent feature. This uniquely provides a model of type III hypersensitivity in which Fc classes of Ig that forms immune complex differentially determine the disease manifestation. To investigate the mechanisms of how mast cells and basophils regulate this IgE-mediated Arthus reaction. IgE-mediated cutaneous reverse passive Arthus reaction was induced in wild-type C57BL/6 or WBB6F1-+/+ mice and mast-cell-deficient WBB6F1-W/W(v) mice by intradermal injection of IgE anti-trinitrophenyl antibodies followed immediately by intravenous administration of trinitrophenyl bovine serum albumin. Basophils were depleted in vivo using anti-CD200R3 monoclonal antibody prior to the IC challenge. Hemorrhage and infiltration of eosinophils, neutrophils, and basophils were significantly reduced but were not completely abrogated in WBB6F1-W/W(v) mice compared with those in wild-type WBB6F1-+/+ mice. Wild-type C57BL/6 mice treated by basophil-depleting mAb also showed significantly decreased hemorrhage and inflammatory cell infiltration, especially that of eosinophils, compared with control mice. Furthermore, basophil depletion in WBB6F1-W/W(v) mice led to nearly complete inhibition of eosinophil recruitment. By contrast, basophil depletion did not further decrease neutrophil infiltration in WBB6F1-W/W(v) mice. While mast cells play a central role, basophils also have an important function, especially for eosinophil recruitment, in IgE-mediated cutaneous reverse passive Arthus reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.