Abstract

Transport characteristics of [14C]glycylsarcosine ([14C]Gly-Sar) were measured in herbivorous tilapi (Oreochromis mossambicus) intestinal basolateral membrane vesicles (BLMV) purified with Percoll gradient centrifugation. Specific activity of the vesicle Na(+)-K(+)-adenosinetriphos- phatase was increased 12-fold, whereas specific activity of the brush-border enzyme alkaline phosphatase was enriched only by 0.8-fold. [14C]Gly-Sar uptake was stimulated by increasing concentrations of extravesicular protons rather than by a transmembrane proton gradient. A transmembrane K+ diffusion potential (inside negative) did not stimulate [14C]Gly-Sar uptake above that observed with short-circuited vesicles. An inwardly directed Na+ gradient had no effect on peptide uptake. Kinetic analysis of basolateral transport rate revealed that the transport occurred by a saturable process conforming to Michaelis-Menten kinetics [Kt [concentration of [14C]Gly-Sar that yielded one-half of maximal influx (Jmax)] = 13.27 +/- 3.80 mM, Jmax = 15,155 +/- 3,096 pmol.mg protein-1.6 s-1]. The basolateral transporter was insensitive to diethylpyrocarbonate (DEP), a specific inhibitor of proton-coupled peptide transport systems. [14C]Gly-Sar influx into tilapia BLMV showed cis-inhibition by several other dipeptides, suggesting that the [14C]Gly-Sar transporter was shared by other peptides too. These observations strongly suggest that the basolateral intestinal dipeptide transporter in herbivorous fishes is distinctly different from either the high- or low-affinity brush-border transporter. It is proton dependent, electroneutral, sodium independent and accepts a wide variety of dipeptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call