Abstract

This paper presents the basis-based speaker adaptation method that includes approaches using principal component analysis (PCA) and two-dimensional PCA (2DPCA). The proposed method partitions the hidden Markov model (HMM) mean vectors of training models into subvectors of smaller dimension. Consequently, the sample covariance matrix computed using the partitioned HMM mean vectors has various dimensions according to the dimension of the subvectors. From the eigen-decomposition of the sample covariance matrix, basis vectors are constructed. Thus, the dimension of basis vectors varies according to the dimension of the sample covariance matrix, and the proposed method includes PCA and 2DPCA-based approaches. We present the adaptation equation in both the maximum likelihood (ML) and maximum a posteriori (MAP) frameworks. We perform continuous speech recognition experiments using the Wall Street Journal (WSJ) corpus. The results show that the model with basis vectors whose dimensions are between those of PCA and 2DPCA-based approaches shows good overall performance. The proposed approach in the MAP framework shows additional performance improvement over the ML counterpart when the number of adaptation parameters is large but the amount of available adaptation data is small. Furthermore, the performance of the approach in the MAP framework approach is less sensitive to the choice of model order than the ML counterpart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.