Abstract

In this work, the basis sets designed by Clementi, Bunge and Thakkar, for atomic systems, have been used to obtain the electronic structure of confined many-electron atoms by using Roothaan's approach in the Hartree–Fock context with a new code written in C, which uses the message-passing interface library. The confinement was imposed as Ludeña suggested to simulate walls with infinity potential. For closed-shell atoms, the Thakkar basis set functions give the best total energies (TE) as a function of the confinement radius, obtaining the following ordering: TE(Thakkar) < TE(Bunge) < TE(Clementi). However, for few open-shell atoms this ordering is not preserved and a trend, for the basis sets, is not observed. Although there are differences between the TE predicted by these basis set functions, the corresponding pressures are similar to each other; it means that changes in the total energy are described almost in the same way by using any of these basis sets. By analysing the total energy as a function of the inverse of the volume we propose an equation of state; for regions of small volumes, this equation predicts that the pressure is inversely proportional to the square of the volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.