Abstract

AbstractRecently, a hierarchical sequence of augmented basis sets of double, triple, and quadruple zeta valence quality plus polarization functions (AXZP, X = D, T, and Q) for the atoms from H to Ar were presented by Jorge et al. We report a systematic study of basis sets required to obtain accurate values of several electric properties for benzene, pyridine, the five common nucleic acid bases (uracil, cytosine, thymine, guanine, and adenine), and three related bases (fluorouracil, 5‐methylcytosine, and hypoxanthine) at their full optimized geometries. Two methods were examined: Hartree‐Fock (HF) and density functional theory (DFT). Including electron correlation decreases the magnitude of the dipole moment and increases the mean polarizability and also the polarizability anisotropy for every molecule. Calculated B3LYP/ADZP dipole moments and dipole polarizabilities show good agreement with both experimental and ab initio results based on second‐order Møller‐Plesset perturbation theory calculations. We have also showed that a basis set of double zeta quality is enough to obtain reliable and accurate electric property results for this kind of compounds. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call