Abstract

The basis-set convergence of the electronic correlation energy in the water molecule is investigated at the second-order Mo/ller–Plesset level and at the coupled-cluster singles-and-doubles level with and without perturbative triples corrections applied. The basis-set limits of the correlation energy are established to within 2 mEh by means of (1) extrapolations from sequences of calculations using correlation-consistent basis sets and (2) from explicitly correlated calculations employing terms linear in the interelectronic distances rij. For the extrapolations to the basis-set limit of the correlation energies, fits of the form a+bX−3 (where X is two for double-zeta sets, three for triple-zeta sets, etc.) are found to be useful. CCSD(T) calculations involving as many as 492 atomic orbitals are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call