Abstract

We obtain a basis of joint or proper differential invariants for the scalar linear hyperbolic partial differential equation in two independent variables by the infinitesimal method. The joint invariants of the hyperbolic equation consist of combinations of the coefficients of the equation and their derivatives which remain invariant under equivalence transformations of the equation and are useful for classification purposes. We also derive the operators of invariant differentiation for this type of equation. Furthermore, we show that the other differential invariants are functions of the elements of this basis via their invariant derivatives. Applications to hyperbolic equations that are reducible to their Lie canonical forms are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.