Abstract

Wild oat is the second-most abundant, but most economically important, weed across the Canadian Prairies of western Canada. Despite the serious economic effects of resistance to acetyl-CoA carboxylase (ACC) or acetolactate synthase (ALS) inhibitors or both in this weed throughout the Northern Great Plains of North America, little research has examined the basis for herbicide resistance. We investigated target-site and nontarget-site mechanisms conferring ACC- and ALS-inhibitor resistance in 16 wild oat populations from across western Canada (four ACC-inhibitor resistant, four ALS-inhibitor resistant, and eight ACC- and ALS-inhibitor resistant). TheACC1mutations were found in 8 of the 12 ACC inhibitor-resistant populations. The Ile1781Leu mutation was detected in three populations, the Trp2027Cys and Asp2078Gly mutations were in two populations each, and the Trp1999Cys, Ile2041Asn, Cys2088Arg, and Gly2096Ser substitutions were in one population each. Three populations had twoACC1mutations. Only 2 of the 12 ALS inhibitor-resistant populations had anALStarget-site mutation—Ser653Thr and Ser653Asn substitutions. This is the first global report ofALStarget-site mutations inAvenaspp. and four previously undocumentedACC1mutations in wild oat. Based on these molecular analyses, seedlings of five ACC + ALS inhibitor-resistant populations (one with anACC1mutation; four with noACCorALSmutations) were treated with malathion, a known cytochrome P450 monooxygenase inhibitor, followed by application of one of four ACC- or ALS-inhibiting herbicides. Malathion treatment often resulted in control or suppression of these populations, suggesting involvement of this enzyme system in contributing to resistance to both ACC and ALS inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call