Abstract
This paper is concerned with the computation of the basins of attraction of a simple one degree-of-freedom backlash oscillator using cell-to-cell mapping techniques. This analysis is motivated by the modeling of order vibration in geared systems. We consider both a piecewise-linear stiffness model and a simpler infinite stiffness impacting limit. The basins reveal rich and delicate dynamics, and we analyze some of the transitions in the system's behavior in terms of smooth and discontinuity-induced bifurcations. The stretching and folding of phase space are illustrated via computations of the grazing curve, and its preimages, and manifold computations of basin boundaries using DsTool (Dynamical Systems Toolkit).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.