Abstract
Abstract The East Mediterranean Sea (EMS) circulation has previously been characterized as dominated by gyres, mesoscale eddies, and disjoint boundary currents. We develop nested high-resolution numerical simulations in the EMS to examine the circulation variability with an emphasis on the yet unexplored regional submesoscale currents. Rather than several disjoint currents, a continuous cyclonic boundary current (BC) encircling the Levantine basin is identified in both model solution and altimetry data. This EMS BC advects eddy chains downstream and is identified as a principal source of regional mesoscale and submesoscale current variability. During the seasonal fall to winter mixed layer deepening, energetic submesoscale [O(10) km] eddies, fronts, and filaments emerge throughout the basin, characterized by O(1) Rossby numbers. A submesoscale time scale range of ≈1–5 days is identified using spatiotemporal analysis of the numerical solutions and confirmed through mooring data. The submesoscale kinetic energy (KE) wavenumber (k) spectral slope is found to be k−2, shallower than the quasigeostrophic-like ∼k−3 slope diagnosed in summer. The shallowness of the winter spectral slope is shown to be due to divergent subinertial motions, consistent with the Boyd theoretical model, rather than with the surface quasigeostrophic model. Using a coarse-graining approach, we diagnose a seasonal inverse (forward) KE cascade above (below) 30-km scales due to rotational (divergent) motions and show that these commence after completion of the fall submesoscale energization. We also show that at scales larger than several hundred kilometers, the spectral density becomes near constant and a weak forward cascade occurs, from gyre scales to mesoscales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.