Abstract

In the alligator lizard the entire basilar membrane is accessible for measurements of its velocity by the Mössbauer method. Tests of the method indicate (1) the Mössbauer source can be placed on the basilar membrane without altering the signal-transmission properties of the cochlea, and (2) the source adheres to the basilar membrane. Isovelocity curves (IVCs) were constructed by plotting (as a function of tone frequency) the sound-pressure level at the tympanic membrane required to produce a specified velocity amplitude. IVCs from 21 lizards for source locations spanning the length of the basilar membrane indicate that basilar-membrane velocity does not vary systematically with longitudinal location as it does in mammalian cochleas. Measurements of velocity waveforms in two lizards do not indicate substantial nonlinearity in the inner-ear mechanical system. The frequency dependence of the basilar-membrane velocity is similar to that of the extrastapes velocity over the range 0.4 to 2 kHz. Thus, the tonotopic organization and frequency selectivity, which have been previously demonstrated in this species in responses of both auditory-nerve fibers and cells of the receptor organ, are apparently not primarily determined by basilar-membrane motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call