Abstract

In this paper we present a survey of the use of differential geometric formalisms to describe Quantum Mechanics. We analyze Schrödinger framework from this perspective and provide a description of the Weyl–Wigner construction. Finally, after reviewing the basics of the geometric formulation of quantum mechanics, we apply the methods presented to the most interesting cases of finite dimensional Hilbert spaces: those of two, three and four level systems (one qubit, one qutrit and two qubit systems). As a more practical application, we discuss the advantages that the geometric formulation of quantum mechanics can provide us with in the study of situations as the functional independence of entanglement witnesses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call