Abstract

Manipulation for simplifying or increasing the observed charge state distributions of proteins can be highly desirable in mass spectrometry experiments. In the present work, we implemented a vapor introduction technique to an Agilent Jet Stream ESI (Agilent Technologies, Santa Clara, CA, USA) source. An apparatus was designed to allow for the enrichment of the nitrogen sheath gas with basic vapors. An optical setup, using laser-induced fluorescence and a pH-chromic dye, permits the pH profiling of the droplets as they evaporate in the electrospray plume. Mechanisms of pH droplet modification and its effect on the protein charging phenomenon are elucidated. An important finding is that the enrichment with basic vapors of the nitrogen sheath gas, which surrounds the nebulizer spray, leads to an increase in the spray current. This is attributed to an increase in the electrical conductivity of water-amine enriched solvent at the tip exit. Here, the increased current results in a generation of additional electrolytically produced OH(-) ions and a corresponding increase in the pH at the tip exit. Along the electrospray plume, the pH of the droplets increases due to both droplet evaporation and exposure to basic vapors from the seeded sheath gas. The pH evolution in the ESI plume obtained using pure and basic seeded sheath gas was correlated with the evolution of the charge state distribution observed in mass spectra of proteins, in the negative ion mode. Taking advantage of the Agilent Jet Stream source geometry, similar protein charge state distributions and ion intensities obtained with basic initial solutions, can be obtained using native solution conditions by seeding the heated sheath gas with basic vapors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call