Abstract

One of the great opportunities for waste utilization and reduction of global warming (carbon footprint) is the utilization of the methane in the gas to produce electric power with a fuel cell. These waste gases are primarily methane which must be reformed to hydrogen before use in a fuel cell. There are three basic types of methane reforming—steam, autothermal and partial oxidation. Temperature, pressure, and steam-to-carbon ratio play an important role in the performance of steam reforming. These variables also influence the reversible work and reaction enthalpy of the reforming products. A fuel cell stack or cell integrated steam reformer allows a recirculation of reversible heat as long as the operational temperature of the fuel cell is appropriate to the temperature of the reformer. The maximum total reversible work (highest exergetic efficiency) of the hydrogen and the carbon monoxide Wrev,H2,CO,ox is achieved at 762 kJ per 1 mol methane which is converted in the fuel processor. This corresponds to a maximum intrinsic thermal efficiency ηTh,Max, of 95% at an optimum temperature of 1023 K. This optimum temperature is in the operating temperature range of the high-temperature fuel cells like the molten carbonate and solid oxide fuel cells. Higher efficiencies can be expected with these fuel cells with steam reforming when utilizing natural gas, anaerobic digestor gas, or landfill gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.