Abstract

Abstract Ventilator-associated pneumoniae (VAP) are a major problem in intensive care units. Previous in vitro experiments revealed that blue or violet luminescent endotracheal tubes are capable of inhibiting bacterial growth and may thus prevent pathogens from entering the lung. However, while these in vitro studies were conducted in a relatively transparent bacterial suspension, subglottic secretions around endotracheal tubes can also contain highly absorbent components, such as blood. To investigate if light has an antimicrobial effect under such conditions, staphylococcal solutions containing various absorbent components were irradiated by blue or violet luminescent endotracheal tubes for up to 24 h in a tracheal model. Light was generated externally by LEDs or lasers and entered the tube via light guides. An antimicrobial effect was observed for blue and violet light, which was, however, inhibited to some extent in the presence of light adsorbing molecules. Under these conditions, violet light had a stronger effect than blue at low absorptions, while at strong absorptions the effects converged, with blue light even exhibiting a slightly stronger impact. Significant differences between lasers and LEDs could not be detected. In our model, inhibition of bacterial growth could be observed even in the presence of light absorbing molecules. Illuminating endotracheal tubes with blue or violet light may thus represent a promising strategy to migration of bacteria from the oropharynx into the trachea and, thereby, possibly decrease the incidence of VAP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call