Abstract
This paper determines the impulsive sound fields produced by sharp-edged gusts striking the leading edge of a supersonic blade or aerofoil, for example in a turbofan aeroengine or a counter-rotating propeller system. A full three-dimensional theory is provided, so that the gust edges can be at any orientation relative to the blade. Complete details are given of the sound fields produced by gust edges in the spanwise and streamwise directions, and by many combinations of such edges, including corners. The mathematical theory depends on singular sound fields produced by gusts with a delta-function upwash; these are used to derive exact analytical formulae for impulsive sound fields of different three-dimensional shapes, and also a Green’s function representation of the field which is especially adapted to numerical evaluation. Gusts with top-hat profiles are given particular attention, and also the effect of Gaussian-function smoothing of both delta-function and top-hat profiles. The investigation is complementary to that in a companion paper (Powles and Chapman, 2019), which determines the smooth sound fields produced by single-frequency gusts. Fourier integration provides the relation between the two types of field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.