Abstract

A new methodology that enables us to compute the arbitrary shaped 3D crack problems is studied. In the present method, it is possible to analyze the 3D crack problems without preparing mesh data as in ordinary boundary elements but with defining a sequence of nodal points representing the crack front and the internal nodal points that define a crack surface as well as a shape function used for determining unknown variables. The present method has special potential for analyzing a complicated 3D crack geometry which is generally difficult to treat in usual element based methods. In the present research, we apply mesh-free body force method to analyze the growth of 3D planar cracks. In concrete, a crack growth analysis for initially rectangular or elliptical crack existing in an infinite solid under uniform tensile stress perpendicular to the crack surface at infinity is demonstrated

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.