Abstract

Reed–Muller codes are one of the most well-studied families of codes; however, there are still open problems regarding their structure. Recently, a new ring-theoretic approach has emerged that provides a rather intuitive construction of these codes. This approach is centered around the notion of basic Reed–Muller codes. We recall that Reed–Muller codes over a prime field are radical powers of a corresponding group algebra. In this paper, we prove that basic Reed–Muller codes in the case of a nonprime field of arbitrary characteristic are distinct from radical powers. This implies the same result for regular codes. Also we show how to describe the inclusion graph of basic Reed–Muller codes and radical powers via simple arithmetic equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.