Abstract

We derive the magnetic helicity for configurations formed by flux tubes contained fully or only partially in the spatial domain considered (called closed and open configurations, respectively). In both cases, magnetic helicity is computed as the sum of mutual helicity over all possible pairs of magnetic flux tubes weighted by their magnetic fluxes. We emphasize that these mutual helicities have properties which are not those of mutual inductances in classical circuit theory. For closed configurations, the mutual helicity of two closed flux tubes is their relative winding around each other (known as the Gauss linkage number). For open configurations, the magnetic helicity is derived directly from the geometry of the interlaced flux tubes so it can be computed without reference to a ground state (such as a potential field). We derive the explicit expression in the case of a planar and spherical boundary. The magnetic helicity has two parts. The first one is given only by the relative positions of the flux tubes on the boundary. It is the only part if all flux tubes are arch-shaped. The second part counts the integer number of turns each pair of flux tubes wind about each other. This provides a general method to compute the magnetic helicity with discrete or continuous distributions of magnetic field. The method sets closed and open configurations on an equal level within the same theoretical framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.