Abstract

An unconventional high temperature fuel cell system, the liquid tin anode solid oxide fuel cell (LTA-SOFC), is discussed. A thermodynamic analysis of a solid oxide fuel cell with a liquid metal anode is developed. Pertinent thermochemical and thermophysical properties of liquid tin in particular are detailed. An experimental setup for analysis of LTA-SOFC anode kinetics is described, and data for a planar cell under hydrogen indicated an effective oxygen diffusion coefficient of 5.3×10−5cm2s−1 at 800°C and 8.9×10−5cm2s−1 at 900°C. This value is similar to previously reported literature values for liquid tin. The oxygen conductivity through the tin, calculated from measured diffusion coefficients and theoretical oxygen solubility limits, is found to be on the same order of that of yttria-stabilized zirconia (YSZ), a traditional SOFC electrolyte material. As such, the ohmic loss due to oxygen transport through the tin layer must be considered in practical system cell design since the tin layer will usually be at least as thick as the electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.