Abstract

The process of creating a model as a conceptual representation of some phenomenon is called modeling. The physical, geometric, functional, or geometric properties of an object can be represented as a model. Technical, or subject-based, modeling is often used in solving practical problems in science. The models used for experiments should be geometrically similar to the corresponding real objects. Thus, using the method of similarity theory, when we are trying to solve technical problems it is relevant to study complex processes on simpler models, and therefore the study of modeling principles and options for their application. The paper describes the characteristics of models of various levels and provides examples of their application, classification of multiple forms of modeling, ways to display the immanent properties of figures. The importance of initial conditions in the fundamental choice of the model and its use is emphasized. Generalized modeling algorithms of different levels and their application in a number of technical tasks are presented. The projection-coordinate principles of constructing geometric models are described in detail. The general characteristics of models of different classes are given based on their initial parameters: coordinate, projection, nomographic. Coordinate-projection models based on the classical scheme of G. Monge are described. The characteristics of modeling processes based on parameters having different geometric meanings are given. Theoretical reasoning is confirmed by concrete examples from the field of aircraft building. Examples of the use of projection models in images of surfaces of wing and tail elements are shown. The figures contain a sufficient level of information about the role and significance of production parameters and their use in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call