Abstract

Among the numerous general anesthetics utilized in rodent surgical procedures, the co-administration of ketamine and xylazine is the current standard for induction and maintenance of surgical planes of anesthesia and pain control. In contrast to classical GABAergic anesthetics, which act to inhibit CNS activity, inducing muscle relaxation, sedation, hypothermia, and brain hypoxia, ketamine and xylazine act through different mechanisms to induce similar effects while also providing potent analgesia. By using three-point thermorecording in freely moving rats, we show that the ketamine-xylazine mixture induces modest brain hyperthermia, resulting from increased intra-cerebral heat production due to metabolic brain activation and increased heat loss due to skin vasodilation. The first effect derives from ketamine, which alone increases brain and body temperatures due to brain metabolic activation and skin vasoconstriction. The second effect derives from xylazine, which increases heat loss due to potent skin vasodilation. By using oxygen sensors coupled with amperometry, we show that the ketamine-xylazine mixture modestly decreases brain oxygen levels that results from relatively weak respiratory depression. This tonic pharmacological effect was preceded by a strong but transient oxygen increase that may result from a stressful injection or unknown, possibly peripheral action of this drug combination. This pattern of physiological effects elicited by the ketamine-xylazine mixture differs from the effects of other general anesthetic drugs, particularly barbiturates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.