Abstract

This chapter outlines the general principles of physics and physiology underlying MEG and EEG signals. It introduces charges and electric currents, and the associated electric potentials and magnetic fields. Basic laws of electricity and the relationships between magnetic and electrical fields are examined. The phenomenon of superconductivity is introduced and related to measurements of MEG signals with SQUID sensors. The effects of various tissues and current configurations on MEG and EEG signals are described. Basic principles of source localization, that is modeling the neuronal sources of the observed MEG and EEG signals are described. The spatial accuracy versus precision of source localization is illustrated. Volume conduction, current spread in the different compartments of the body is explained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.