Abstract

Although extensive research has been conducted on the mechanical behaviour of Portland cement-treated soft clays, there has been less emphasis on the correlation of the observed behaviour with clay mineralogy. In this study, experimental results from the authors have been combined with the data found in the literature to investigate the effect of parameters such as curing time, cement content, moisture content, liquidity index, and mineralogy on the mechanical properties of cement-treated clays. The findings show that undrained shear strength and sensitivity of cemented clays still continue to increase after relatively long curing times; expressions are proposed to predict the strength and sensitivity with time. This parametric study also indicates the relative importance of the activity of the soil, as well as the water–cement ratio, to the mechanical properties of cementitious admixtures. Two new empirical parameters are introduced herein. Based on the results of unconfined compression, undrained triaxial, and oedometer tests on cement-enhanced clays, expressions that use these parameters to predict undrained shear strength, yield stress, and the slope of the compression line are proposed. The observed variations in the mechanical behaviour with respect to mineralogy and the important effect of curing time are explained in terms of the pozzolanic reactions. The possible limitations of applying Abrams׳ law to cement–admixed clays are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.