Abstract

This numerical simulation work investigates the basic physical mechanisms of single events induced in a target layer composed of silicon carbide exposed to natural radiation with atmospheric neutrons at the terrestrial level. Using direct calculations and extensive Geant4 simulations, this study provides an accurate investigation in terms of nuclear processes, recoil products, secondary ion production and fragment energy distributions. In addition, the thorough analysis includes a comparison between the responses to neutron irradiation of silicon carbide, carbon (diamond) and silicon targets. Finally, the consequences of these interactions in terms of the generation of electron–hole pairs, which is a fundamental mechanism underlying single-event transient effects at the device or circuit level, are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.