Abstract

At least some of us, at least some of the time—when not in the grip of radical sceptical doubt—are inclined to believe that we know, for example, that if we infer a conclusion from two true premises, one a conditional whose consequent is that conclusion and the other the antecedent of that conditional, then our conclusion must be true, or that we know similar things about other simple patterns of inference. If we do indeed have knowledge of this sort, it is what I mean by logical knowledge. Logical knowledge is, roughly speaking, knowledge about logic—such as knowledge that a certain principle of inference necessarily preserves truth, or that every proposition of a certain form must be true—and so is not the same thing as knowledge that is gained by using logic, i.e. inferential knowledge. That is not to say, of course, that logical knowledge can't be inferential. On the contrary, it is barely open to question that—if there is any logical knowledge at all—there is a lot of inferential logical knowledge. For example, if we know that the introduction and elimination principles for the conditional are truth-preserving, we can surely get to know, by inference, that the principle of hypothetical syllogism (i.e. transitivity of the conditional) is so too, not to mention other, less obvious and more recondite, examples of putative logical knowledge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.