Abstract
Manufacturability analysis of product design reduces the downstream problems of manufacturing. Such design approaches are referred to as Virtual Prototyping when performed on the computer. In the present research, Virtual Prototyping is facilitated by the use of an automated method of determining the finite element meshes needed to perform finite element analyses. Finite element analysis requires a finite element mesh of the product model as input. This mesh (an approximation of an object’s geometry and topology, composed in terms of a given individual unit, e.g., a tetrahedron, or a hexahedron), can be generated using a variety of methods. The research presented here offers an approach for automatic mesh generation that addresses some of the limitations in the mesh-generation technologies currently available. This article presents an approach for automatically generating hexahedral meshes from solid models. The mesh generating method presented in this paper involves four major steps. First, objects called Basic LOgical Bulk shapes (BLOBs) are determined from the solid model of a given part. Second, these BLOBs are used to decompose the solid model into its various sub-volumes. Third, a multiple-block structure (MBS), which is a group of hexahedral objects, is constructed to approximate the solid model. Finally, transfinite mapping is employed to project the faces of the MBS onto the surfaces of a model to generate the finite element meshes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.