Abstract
This work addresses design and construction issues of a laboratory robotic arm for educational purposes. First of all, the robotic arm performance analysis has been accomplished using Matlab / Simulink / SimMechanics. The obtained knowledge has been utilized to develop the suitable algorithms for analyzing the robotic arm kinematics. Once the SimMechanics model is successfully determined, a real-time xPC target system is used in order to connect the real laboratory robotic arm with the corresponding Matlab / Simulink block diagram. It is important to remark that the developed robotic arm is a convenient tool for learning robotics at any favorable technical university laboratory. On the other hand, the manipulator has six degrees of freedom. Three degrees of freedom correspond to the robotic arm and the rest belongs to the gripper. Moreover, the necessary electronic modules have been developed in order to allow a successful standard communication with the available laboratory devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.