Abstract

Since first proposed by Gordon Moore (an Intel founder) in 1965, his law [107] that the number of transistors on microprocessors doubles roughly every one to two years has proven remarkably astute. Its corollary, that central processing unit (CPU) performance would also double every two years or so has also remained prescient. Figure 1.1 shows Intel microprocessor data on the number of transistors beginning with the 4004 in 1972. Figure 1.2 indicates that when one includes multi-processor machines and algorithmic development, computer performance is actually better than Moore’s 2-year performance doubling time estimate. Alas, however, in recent years there has developed a disagreeable mismatch between CPU and memory performance: CPUs now outperform memory systems by orders of magnitude according to some reckoning [71]. This is not completely accurate, of course: it is mostly a matter of cost. In the 1980s and 1990s, Cray Research Y-MP series machines had well balanced CPU to memory performance. Likewise, NEC (Nippon Electric Corp.), using CMOS (see glossary, Appendix F) and direct memory access, has well balanced CPU/Memory performance. ECL (see glossary, Appendix F) and CMOS static random access memory (SRAM) systems were and remain expensive and like their CPU counterparts have to be carefully kept cool. Worse, because they have to be cooled, close packing is difficult and such systems tend to have small storage per volume. Almost any personal computer (PC) these days has a much larger memory than supercomputer memory systems of the 1980s or early 1990s. In consequence, nearly all memory systems these days are hierarchical, frequently with multiple levels of cache. Figure 1.3 shows the diverging trends between CPUs and memory performance. Dynamic random access memory (DRAM) in some variety has become standard for bulk memory. There are many projects and ideas about how to close this performance gap, for example, the IRAM [78] and RDRAM projects [85]. We are confident that this disparity between CPU and memory access performance will eventually be tightened, but in the meantime, we must deal with the world as it is.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call