Abstract
The hydrogenation and deuteration of graphite with potassium intercalation compounds as starting materials were investigated in depth. Characterization of the reaction products (hydrogenated and deuterated graphene) was carried out by thermogravimetric analysis coupled with mass spectrometry (TG-MS) and statistical Raman spectroscopy (SRS) and microscopy (SRM). The results reveal that the choice of the hydrogen/deuterium source, the nature of the graphite (used as starting material), the potassium concentration in the intercalation compound, and the choice of the solvent have a great impact on the reaction outcome. Furthermore, it was possible to prove that both mono- and few-layer hydrogenated/deuterated graphene can be produced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.