Abstract
Purpose: To test the effects and underlying mechanisms of basic fibroblast growth factor (bFGF) on the limbal niche cell (LNC) function ex vivo. Methods: By using different concentrations of bFGF (0, 4, 8, 12, and 16 ng/mL) and fibroblast growth factor receptor (FGFR) inhibitors, the effects of bFGF on LNC proliferation, expression of stem cell markers, and transcription levels of the β-catenin were investigated. Single-cell RNA sequencing (scRNA-seq) was used to analyze the action and mechanisms of FGFR subtypes and the Wnt/β-catenin pathway during LNC culture. An mature corneal epithelial cell (MCEC)/LNC three-dimensional model was constructed to verify whether bFGF activates the Wnt/β-catenin pathway in LNC by inhibiting FGFR or β-catenin targets. Results: scRNA-seq showed that FGFR1 is the main receptor in LNC, along with the molecules in the Wnt pathway, including WNT2, FZD7, LRP5, LRP6, and β-catenin. The 12 ng/mL bFGF treatment group showed higher LNC proliferation rate and transcription levels of OCT4, SOX2, NANOG, and β-catenin than any other groups (P < 0.001). In the MCEC/LNC co-culture model, MCEC/LNC treated with 12 ng/mL bFGF promoted the aggregation of the spheres than other groups, associated with increased transcription levels of P63α, WNT2, β-catenin, and a decreased transcription level of CK12 (P < 0.001). Wnt/β-catenin inhibitor LF3 treatment reversed the abovementioned effect of bFGF. Conclusions: bFGF could maintain and promote the stemness of LNC via the FGFR1/Wnt2/FZD7/LRP6 axis in a concentration-dependent manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.