Abstract

Rats were given bilateral lesions of the motor cortex on the tenth day of life, and then received a daily subcutaneously injection of either basic fibroblast growth factor (FGF-2) or vehicle for 7 consecutive days. In adulthood, they were trained and assessed on a skilled forelimb reaching task. Although all lesion groups were impaired at skilled reaching, the postnatal day 10-lesioned group that received FGF-2 was less impaired than the lesion group that received the vehicle. Furthermore, the lesioned rats that received FGF-2 showed a filling of the lesion cavity with tissue, whereas the lesioned vehicle-treated rats still had a prominent lesion cavity. The functionality of the tissue filling the cavity, tissue surrounding it, and tissue from the motor cortex (in control rats) was assessed using intracortical microstimulation, and showed that stimulation of some sites from the filled cavity could evoke movement. The rats were perfused and processed for Golgi-Cox staining. Medium spiny neurons from the striatum were drawn and analyzed, and the results suggest that postnatal day 10 lesions of the motor cortex induced an increase in the length and complexity of these cells compared with those of non-lesioned rats. Our results suggest that FGF-2 may play an important role in recovery from early brain damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.