Abstract

The putative neurotrophic effects of basic fibroblast growth factor (bFGF) were tested on embryonic hypothalamic neurons in dissociated cell culture. Basic FGF dramatically increased the survival of embryonic hypothalamic astrocytes plated on a poly-L-lysine (PLL) substrate. Basic FGF treatment also increased the number of hypothalamic neurons surviving in vitro; however, no neurotrophic effects were observed when astrocyte proliferation was prevented by using serum-free N2 medium or by using the mitotic inhibitor cytosine arabinoside. In contrast to effects when PLL was used as a substrate, bFGF reduced the survival of hypothalamic neurons plated on a confluent, contact-inhibited monolayer of astrocytes. This effect appears to be due to the direct actions of bFGF on astrocytes: treatment of confluent astrocytes with 5 ng/ml bFGF caused the protoplasmic astrocytes to develop a fibrillar morphology and reduced the ability of the astrocyte monolayer to promote neuronal survival after a further 24 hr in bFGF-free medium. It is concluded that in addition to its mitogenic effects, bFGF acts as a differentiation factor for protoplasmic astrocytes in vitro, and these morphological and functional changes may reflect the process of normal astrocytic development and response to brain injury in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call