Abstract
Influenza virus (IAV) infection is a major cause of severe respiratory illness that affects almost every country in the world. IAV infections result in respiratory illness and even acute lung injury and death, but the underlying mechanisms responsible for IAV pathogenesis have not yet been fully elucidated. In this study, the basic fibroblast growth factor 2 (FGF2) level was markedly increased in H1N1 virus-infected humans and mice. FGF2, which is predominately derived from epithelial cells, recruits and activates neutrophils via the FGFR2-PI3K-AKT-NFκB signaling pathway. FGF2 depletion or knockout exacerbated influenza-associated disease by impairing neutrophil recruitment and activation. More importantly, administration of the recombinant FGF2 protein significantly alleviated the severity of IAV-induced lung injury and promoted the survival of IAV-infected mice. Based on the results from experiments in which neutrophils were depleted and adoptively transferred, FGF2 protected mice against IAV infection by recruiting neutrophils. Thus, FGF2 plays a critical role in preventing IAV-induced lung injury, and FGF2 is a promising potential therapeutic target during IAV infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.