Abstract

We recently demonstrated that microglia as multipotential stem cells give rise to microtubule-associated protein 2 (MAP2)-positive and glial fibrillary acidic protein (GFAP)-positive cells and that microglia-derived MAP2-positive cells possess properties of functional neurons. In this study, we investigated the role of fibroblast growth factor (FGF) signaling in the molecular mechanism underlying the generation of microglia-derived MAP2-positive and GFAP-positive cells. Real-time quantitative PCR analyses demonstrated that mRNA levels of a family of three FGF receptors, Fgfr1–3, were upregulated in microglia treated with 70% fetal bovine serum (FBS). Immunocytochemical analyses demonstrated that basic FGF (bFGF) promoted the generation of microglia-derived MAP2-positive and GFAP-positive cells, and the FGF receptor tyrosine kinase inhibitor SU5402 and the MEK inhibitor PD98059 both inhibited this process. Western blot analyses demonstrated that bFGF increased phosphorylated ERK1/2 levels without altering total ERK1/2 levels. These results suggest that bFGF promotes the generation of microglia-derived MAP2-positive and GFAP-positive cells via FGF receptors and the ERK-MAP kinase pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call