Abstract

Fibroblast growth factors have been increasingly assigned mitogenic and trophic roles in embryonic and postnatal development of the nervous system. Little is known, however, of their functional roles in early embryonic neural development at the neural tube stage. We have examined the effect of basic fibroblast growth factor (bFGF) on the adhesive behavior in culture of dissociated brachio-thoracic neural tube cells from 26- to 30-somite stage chick embryos. Cells plated on collagen-coated substratum at a low density attach to the substratum but show poor cell spreading. Addition of bFGF markedly promotes cell spreading, yielding an epithelial morphology. This effect becomes discernible 6-8 hours after cell plating with bFGF and is completed by 24 hours, with half-maximal and maximal effects attained at around 0.4 and 10 ng/ml, respectively. The number of cells remain largely constant up to 24 hours, and then cell survival and/or mitogenic effects of bFGF become apparent. The cell spreading effect is abolished by cycloheximide treatment, inhibited by the anti-beta 1-integrin antibody CSAT, and accompanied by about twofold increases in the expression of beta 1-integrin and vinculin, components of focal adhesion complexes. Cells cultured with bFGF for 24 hours exhibit enhanced cell attachment and cell spreading with little time lag following cell plating. In earlier embryonic stages, developmentally less mature cells depend much more on bFGF for their cell spreading and survival, while in later stages the cell spreading response to bFGF becomes undetectable as neural tube develops to spinal cord. The cell spreading effect of bFGF is realized on specific extracellular matrix proteins including laminin, fibronectin and collagen, but not on vitronectin, arg-gly-asp peptide (PepTite-2000), poly-L-ornithine or others. These results suggest that, in an early stage of neural tube development, bFGF is involved in the developmental regulation of adhesive interactions between neuroepithelial cells and the extracellular matrix, thereby controlling their proliferation, migration and differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.