Abstract

The effect of basic fibroblast growth factor (bFGF) on apoptosis in normal rat palatal fibroblasts and rat palatal scar fibroblasts was examined by the TUNEL method in order to clarify the mechanism of apoptosis induction in myofibroblasts during the scar formation process. A percentage of scar fibroblasts undergoing apoptosis was significantly higher than that of palatal fibroblasts when they were treated with bFGF succeeding to serum starvation. Palatal fibroblasts, phenotypically modulated into myofibroblasts by the pretreatment with transforming growth factor-β1 (TGF-β1), similarly showed a higher level of apoptosis induction by bFGF-treatment. TGF-β1 elevated protein and mRNA level of FGF receptor (FGFR) in palatal fibroblasts. Tyrosine autophosphorylation of FGFR upon stimulation by bFGF was significantly higher in scar fibroblasts than in normal palatal fibroblasts. These findings suggested that bFGF may be a potential stimulator of apoptosis in myofibroblasts during palatal scar formation and that FGFR may be responsible for this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.