Abstract

The human neuroblastoma cell line CHP100 provides a useful model system in which to study the molecular mechanisms of transcriptional regulation of the low-affinity nerve growth factor receptor (NGFR) gene during neuronal development. Basic fibroblast growth factor (bFGF) induced morphological changes in CHP100 cells, including flattening of cell bodies and neurite outgrowth. bFGF also increased p75NGFR immunoreactivity, as assessed by immunocytochemistry, and increased p75NGFR mRNA levels, as assessed by Northern (RNA) blot analysis. A chimeric gene consisting of 6.7 kb of the 5'-flanking region of the human NGFR gene linked to the chloramphenicol acetyltransferase gene was constructed. In stable transformants of CHP100 cells, 10 ng of bFGF per ml induced an eightfold increase in chloramphenicol acetyltransferase activity. These results indicate that upstream elements of the NGFR gene mediate transcriptional regulation by bFGF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.